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Casting to Geometrical Specification:  
Theory and Practice of Simulation Uncertainty and 

Sensitivity 
A. J. Baker* and Marcel A. Grubert† 

University of Tennessee, Knoxville, TN 37996-2030 

V. E. Lamberti‡ 
Y-12 National Security Complex, Oak Ridge, TN 37831-8096 

Computational prediction of the properties of cast objects can be substantially hindered 
by absence of truly accurate thermo-physical data for the materials and process conditions 
involved. Uncertainty analysis quantifies the impact on a simulation prediction of imprecise 
input data. Sensitivity analysis quantifies the susceptibility of simulation model output to 
input data uncertainty. The associated non-linear computational theory embedding 
uncertainty-sensitivity analysis within a fully coupled fluid-thermal-structural description of 
the casting process is developed. Numerical simulation of an axisymmetric casting model 
generates key data distributions characterizing the theory finite element implementation. 

Nomenclature 
cp = specific heat 
G = elastic shear modulus 
h = enthalpy 
k = thermal conductivity 
L = latent heat 
u = displacement 
r = radial position  
T = temperature difference 
α = thermal expansion coefficient 
ε = strain tensor 
φ = metallurgical phase 
λ =  Lame parameter 
ρ = density 
σ = stress tensor 

I. Introduction 
 The design criteria for as-cast metallurgical adequacy contains at least the following elements: 

•  casting to final shape tolerance 
•  segregation of minor components, porosity, inclusions 
•  crystal structure, with specific reference to brittleness and ductility  
•  residual stress, residual strain estimation 

The ability to impact, estimate, and eventually exert a priori control of the casting process starts with mold 
design for quality filling but ultimately gets down to establishment of a dynamic mold cooling protocol.   
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TN 37996-2030, AIAA Associate Fellow. 
† PhD Student, CFD Laboratory, 323 Perkins Hall, University of Tennessee, Knoxville, TN 37996-2030, AIAA 
student member. 
‡ Chemistry and Chemical Engineering Department, Y-12, PO Box 2009, MS 8096, Oak Ridge, TN 37831-8096. 
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Numerous commercial software packages exhibit the capability to perform thermal, fluid, and stress calculations 
pertinent to metal casting. As with all such numerical modeling and simulation undertakings, accuracy of the 
terminal result is of paramount importance. A significant detraction to accurate prediction of the final shape, hence 
properties of cast objects, is the lack of accurate thermal, physical, and structural data for the materials present and 
the pertinent process conditions.   

To estimate the impact of unreliable thermo-physics closure data on the validity of simulations, uncertainty 
analysis, either inverse or direct, and its close relative sensitivity analysis may be employed. Uncertainty analysis 
quantifies the impact on a simulation prediction of imprecise input data (parametric uncertainty) and the structure of 
the underlying model (structural uncertainty). Sensitivity analysis quantifies the susceptibility of simulation model 
output to input data uncertainty—that is, the evolutionary change of the prediction with respect to all input 
parameters, separately or in conjunction.   

From a review of the recent literature1,2,3 and the results of a contractual technical study,4 conclusions pertinent 
to the casting simulation inverse-sensitivity issue indicate:  

• mathematically, the optimal prediction of casting to a defined tolerance would utilize classical 
inverse sensitivity analysis; 

•     inverse sensitivity analysis is mathematically ill-posed, hence its stable utilization is subject to 
numerous practical implementation constraints;  

•     classical inverse sensitivity is viable only when using very accurate numerics for the thermal and 
displacement models associated with a simulation; 

•     specifically, “noise” in the data representing the input tolerance can totally destroy inverse 
sensitivity analysis stability; and 

• sensitivity theory, focused on quantifying thermo-physics material properties uncertainties input to 
a simulation model, forms the mathematical foundation for both inverse and forward sensitivity 
analysis applications.  

A computer-enabled casting simulation process involves generating an approximate solution to a set of non-
linear partial differential equations (PDEs), closed with boundary conditions (BCs, with uncertainties ± β), for the 
available thermo-physical data base (with uncertainties ± δ)  via discrete numerics (with accuracy uncertainty ± ε). 
Initial conditions (ICs) are required to start the solution process. Figure 1 organizes the interplay of associated 
mathematics, physics, and thermo-physical data closure issues leading to the inverse, uncertainty, and sensitivity 
components of an analysis. The column of left boxes delineates the essence of solution approaches, each feeding the 
simulation identified as the central box. The right column of boxes identifies the key words associated with the 
resulting simulation. 

 
  The developed conclusion is that the lowest left and right boxes best describe the stable approach to simulation 
of dynamic mold cooling processes for optimal production. 

II. Casting Uncertainty – Sensitivity Theory 
Casting to shape S = S(x,y,z,t), within a permissible variation dS, is the crux of the matter for production casting.  

Development of the mathematical definition for the time evolution of S + dS during the in-mold cooling process is 
key to prediction of what is colloquially termed “shrinkage.” Assuming that no solidification occurs during mold 
fill, the technical requirement starts with the exothermic solidification process in the “mushy zone,” followed by a 
thermo-elastic displacement analysis during in-mold, eventually open-mold, cooldown with associated material 
properties dependencies on phase and temperature. 

A. Thermal Displacement Theory 
The mathematical formulation centers on the generic position vector r(x, t) in the casting. During cooldown, 

associated with the temperature process dT, the structural analysis mathematical model must predict the change dr in 
the position vector. The ability to predict the evolution of dr, mathematically expressed as the thermally induced 
displacement field u(x, t), is subject to the uncertainties in all components of the mathematical model, as highlighted 
in Fig. 1. This, of course, generates the sensitivity analysis requirement developed herein. 

Mathematically, the evolution of the displacement field u(x, t)  is the functional 

 u = u(x, t, G, λ, α, T(k, ρ, cp, φ, f, L)) (1) 
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where (x, t) is space-time, and  G, λ and α are the elastic shear modulus, Lame’ parameter, and thermal expansion 
material properties embedded in the mechanical equilibrium conservation principle closed with the Hooke’s law 
elastic constitutive model. The tensor field form is 

 ijijkkijij Tδα)2G3λ(Gε2ελδσ +−+=  (2) 

where ijσ  and ijε  are the stress and strain tensors, respectively, and T is temperature difference. The strain tensor 
kinematic correlation with the displacement field u, assuming small displacements, is 
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Returning to Eq. (1), the temperature field T = T(x, t, k, ρ, cp, φ, f, L) couples the prediction of displacement to 
the thermal history of the casting cooldown process. The temperature field is described mathematically by the 
energy conservation principle closed with the Fourier conduction model in the form 

 0ρ:D =−∇⋅∇−
∂
∂ sTk

t
hE  (4) 

where h = h(cp, T) is enthalpy; ρ, cp, and k are density, specific heat, and thermal conductivity material properties, 
respectively; and s = s(L, T) is the placeholder for the exothermic solidification process for latent heat L. All 
material properties are dependent on metallurgical phase φ, and on T as well within each phase, and f signifies the 
mushy zone solidification model for handling L.    

Equations (1)–(4) define parametrically the sensitivity of prediction of the displacement field during 
solidification to the material database with its intrinsic uncertainty properties. The elements of the associated 
sensitivity matrix are  

 ( ))(, βα pTp∂
∂u  (5) 

The sensitivity of a displacement field prediction is the differential δu defined by the Taylor series 
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the form of which segregates the elasticity model parameter uncertainties from the thermal data base uncertainties.  
The elements of these parameter sets are 
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An inverse sensitivity analysis defines δu and seeks determination of the sensitivities δpα and δpβ that produce 
this desired state. The alternative, avoiding the inherent ill-posedness, is to execute an assortment of forward 
sensitivity problems—that is, compute δpα and δpβ from first principles, hence determine a range for δu.  These 
well-posed problem statements are readily converted to computational syntax using established finite element (FE) 
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procedures.5 Via extremization of the FE approximate discrete construction of the Principle of Virtual Work,6 
Eqs. (1)–(3) become the algebraic matrix equation system 

 [ ] [ ]

{ })gρ,(GRAV

}{α)G,,THERM(}{G},(STIFF
}{

−

−⇒
∂

Π∂
eee

e

h
e Tλλ U

U  (8) 

The column matrix {U} is the displaced state distribution at the nodes of the FE mesh at any specific time.   
Functional dependence on material parameters is noted in Eq. (8), where [STIFF(.)] is the structural “stiffness 
matrix,” [THERM(.)] is the thermal expansion contribution, and {GRAV(.)} results from the gravity body force. 

Several recent publications have focused strictly on sensitivity constructions for the energy principle, Eq. (4), 
specifically addressing the handling of temperature dependent specific heat and latent heat in the mushy zone.2,3 A 
precise examination of the construction confirms that the proposed handling of the enthalpy-temperature mix in 
Eq. (4) was mathematically inconsistent requiring an implementation approximation.   

The elimination of the enthalpy crutch in Eq. (4), coupled with a consistent handling of temperature dependent 
specific heat, precisely eliminates this problem. The theory simply employs a Taylor series, for both cp and k, 
leading to a cubicly non-linear rearrangement of Eq. (4) to the form 

 0)L()()(ρ:D 22 =−∇++⋅∇−
∂
∂

++ sTTcTba
t
TTcTbaE kkkccc  (9) 

The coefficient sets a, b, and c for cp and k, subscripted “c” and “k” respectively, replace the sensitivity 
parameters “cp” and “k” in Eq. (7) with an accurate (up to quadratic) delineation of the temperature dependence of 
these material properties. Further, this procedure admits separation of the latent heat handling from enthalpy and 
places its action as a heat source s(L) dependent on latent heat. 

B. Finite Element Implementation   
The formulation of the FE algorithm for the non-linear energy principle, Eq. (9), follows standard practice.5 The 

functional form of the resultant algebraic equation system is 
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where [MASS(.)], containing the cp temperature dependence, multiplies the nodal temperature change array {Q – 
QN}, over the time interval Δt, and [DIFF(.)] contains the resolved temperature dependence for conductivity 
multiplying the current nodal temperature array {Q}. The data matrix {b(.)} contains the implementation for latent 
heat in the mushy zone, for temperature range (QR, QC) over which it is defined to occur, and {BC(.)} is the 
placeholder for the radiation and/or convection BCs that may be applied. 

With Eq. (10), precise expressions for the sensitivity matrix entries, β/ pT ∂∂  in Eq. (6), can be made, which are 

themselves partial differential equations. Denoting a sensitivity matrix entry as )(
β

TS p , the definition is 
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Since temperature is the solution to Eq. (10), the PDE satisfied by the representative sensitivity matrix entry is 
derived as 
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Proceeding through the details, the PDE defining the evolution of the sensitivity matrix array is determined from 
Eq. (12) as 
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which is readily recognized as the energy principle PDE with a new source term f(parametric sensitivity) entries 
identified in Eq. (6). Specific forms for the source term f(.), as a function of the precise character of temperature 
uncertainty in cp  and L, include: 

• the level of cp or k: 

 ( ) T
t
Tf 2

β or      ,ρ ∇
∂
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=⋅  (14) 

• the slope of cp or k versus temperature: 
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• the curvature of cp or k versus temperature: 
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t
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• the mushy zone latent heat model: 
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It remains to couple the temperature sensitivity to the prediction of the displaced state, the Th ∂∂ /u  pre-
multiplier in Eq. (6). Recalling the FE Virtual Work formulation, Eq. (8), the coupling matrix is [THERM(.)], hence 
the terminal sensitivity expression for displacement as a function of time and the temperature sensitivity of the 
material and model parameters is 
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where FE denotes the finite element solution of Eq. (13) over the time interval appropriate  for a specific source term 
selection f(.).   

The finite element implementation of the developed thermo-structural sensitivity theory is complete. The theory 
accepts non-linear temperature and phase dependence for cp and k, phase dependence for density, and an exothermic 
formulation for the mushy zone solidification process over a definable temperature range. The resultant uncertainty-
sensitivity simulation model predicts time-accurate evolution of temperature distributions coupled to quasi-static 
solutions for structural displacement at select time intervals. 
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III. Discussion and Results 
Figure 2 illustrates the axisymmetric geometry for the problem class under consideration. Figure 3 presents a 

perspective of the Truchas code7 solution at t = 300 sec into mold cooldown, illustrating thermal simulation essence.  
The region of principal interest regarding thermal distortion is the cylindrical shell. Figure 3 confirms that vertical 
gradients therein are minimal, hence the theory implementation exercise was reduced to pure axisymmetric, wherein 
radial displacement is generated by hoop stress.   

The implementation of the FE sensitivity theory employed Matlab,8 utilizing the UT CFD Lab academic toolbox. 
The appendix presents the associated linear basis FE algorithm template, implemented for assumed quadratic 
temperature dependence for specific heat, cp, and conductivity, k. Figure 4 presents the model problem geometry, 
constituted of graphite cylinders enclosing the casting. Both graphite cylindrical surfaces were subjected to a 
combined convection and radiation boundary condition. The initial condition is mold and molten alloy at 1450 K. 
The thermo-physical property database, Table 1, confirms that only the alpha phase of the alloy exhibits temperature 
dependence. 

For orientation, Figure 5 summarizes the FE algorithm prediction of radial displacement and temperature 
distributions, graphed in comparison to liquid-phase-solid regions, for simulation elapsed times t = 1, 51, and 501 
sec. The domain 0.1 ≤ r ≤ 0.2 m is spanned by a 100 element uniform discretization, the simulation is time-accurate 
via the trapezoidal time integration rule, and the alpha phase is encased by solidified shells at t = 501 sec.  The entire 
mold-casting assembly undergoes a radial displacement distribution as a function of time, and the various 
temperature distributions confirm surface cooling. The extremum radial displacement range for the solidified casting 
is 0.0002 ≤ Δr ≤ 0.00045 m. This base simulation was repeatedly re-executed, selectively solving in the process the 
developed sensitivity FE algorithms for alpha phase cp and k temperature dependence. 

Figure 6 summarizes the prediction of temperature distribution sensitivity to cp uncertainty in the time interval 
451 ≤ t ≤ 551 sec, which encompasses alpha phase existence. Throughout, the topmost graph presents the phase 
distribution, followed by the predicted temperature solution sensitivity to level, slope, and curvature of cp 
temperature dependence. The corresponding units for the graphed sensitivities are K2kg/J, K3kg/J, and K4kg/J, or 
more directly K/ cp, K2/ cp, and K3/ cp, where K denotes degrees Kelvin. Solution sensitivity to cp level is very 
modest throughout with derivatives focused at the mold-casting and beta-alpha interfaces as expected.  

Figure 7 presents the determined temperature solution sensitivity distributions to k uncertainty in the time 
interval 401 ≤ t ≤ 551 sec.  The direct units for these data are K/k, K2/k, and K3/k. The sensitivity to k uncertainties 
are an order more significant than to cp uncertainties for the entire time frame, with a rather sharp extrema occurring 
at the beta-alpha interface. 

The algorithm final prediction is displacement sensitivity to the cp and k temperature dependence uncertainty 
throughout the casting-mold solidification history. Figures 8 and 9 summarize the predicted cp and k uncertainty 
displacement sensitivities during the time interval 401 ≤ t ≤ 551 sec. The direct units for these data are m2kg/fs, 
m2kgK/fs, and m2kgK2/fs, where f = cp, k respectively. The displacement sensitivities to cp level, temperature-
gradient, and temperature-gradient dependence are again muted in comparison to that predicted for k, and the 
significant digit for all variables is substantial in comparison to temperature sensitivity, Figures 6–7. Most 
noteworthy is the very sharp extrema occurring in k-sensitivity at the beta-alpha interface. 
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IV. Conclusion 
A casting solidification sensitivity theory focused on thermo-physical data temperature-dependence uncertainty 

has been developed. Identified thermo-physical data handling inconsistencies reported in the literature have been 
eliminated via this explicitly non-linear theory, producing exacting accuracy in handling material property 
uncertainty. As opposed to an inverse sensitivity analysis, with its attendant ill-posedness issues, a sequence of 
forward sensitivity simulation analyses can generate firm quantification of thermal displacement sensitivity to 
identified uncertainties. A computational simulation experiment for an axisymmetric casting of a generic alloy in a 
carbon mold has quantified algorithm performance. 

Appendix 
Following is the formulation of the finite element algorithm for the sensitivity algorithm applied in polar 

coordinates. The virtual work expression Π for an axisymmetric geometry is 
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Forming the displacement temperature sensitivity requires the derivative with respect to temperature, hence 
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The next step is to form the FE algorithms for the radial displacement state u(r) and the time-evolution of the 
temperature T(r, t). The virtual work functional appropriate to this geometry involves both radial and azimuthal 
stress and strain contributions, combined with elastic Hooke’s law. The kinematic strain-displacement relationship 
with FE implementation on the generic finite element domain is 

 
 
 
 
 
 
Table 1. Model problem thermo-physical material properties9 

Representative Alloy 

Property Liquid phase Gamma 
phase 

Beta 
phase Alpha phase 

ρ, kg/m3 17250 17910 18130 19050 

cp, J/kgK 160 (assumed) 160 179 
251049.80180.06.103 TT ⋅⋅+⋅+ −  

k, W/mk 46.3 (assumed) 46.3 43.9 
2510399.10488.06605.8 TT ⋅⋅+⋅+ −  

α, μm/mK 20 (assumed) 20 28 T⋅+ 0266.006.4  

Additional properties 
Melting temp., 

K 1406 

Phase change 
temp., K 

(assumed)  zonemushy γ→  

βγ →  

αβ →  

1350 
1042 
934 

E, kg/m2 
1210203.0 ⋅  

ν 0.22 
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where {U}e is the nodal displacement array. 
Evaluating Eq (A.2) as the sum of integrals formed on the radial discretization of the problem statement domain 

and substituting Eq (A.3) therein leads to evaluation of numerous integrals. The net result is construction of the 
[STIFF] and [THERM] matrices, as theory identified in Eq (8), on the generic FE domain. The forms are  
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In Eqs. (A.4)–(A.5), eR  is element average radius, {R}e is element nodal radii, and el  is element length. 
In summary, this FE thermal displacement computational theory, for displacement sensitivities determination 

including functional dependencies, is 
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Construction of the FE algorithm for temperature evolution involves forming a Galerkin weak statement, 
embedded into a time Taylor series,5 yielding a non-linear algebraic equation system for the developed material 
property sensitivities. This system is assembled from element components {WS}e, as in the structural model. An 
object-oriented template nomenclature for contributions admits full delineation of the detail, including the defined 
quadratic temperature dependence for specific heat and thermal conductivity via 

 { } eeee Q }dataor]{matrixFE)[metric(}dist{)avg)(const(WS ≡  (A.7) 

The evaluation of WSe contributions5 leads to the following template statements 
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In these expressions, the temperature dependency coefficient sets {a,b,c} are also phase (φ) dependent, hence are 
element average data. Further, {Q} denotes nodal temperature, {QN} is nodal temperature from the previous time 
station solution, R is the element average radius, and the 2π will eventually cancel out. The FE algorithm {WS}e 
template for radiation and thermal convection boundary conditions, for {QR} and {QC} the respective radiation and 
convection heat exchange temperatures on radial surface RR, RC, is 

 

{ }

}QC]{ONE)[}({))(RC,π,2(
}]{ONE)[}({))(RC,π,2(

}QRexp4]{ONE)[}({))(ασRR,π,2(
}exp4]{ONE)[0}({))(ασRR,π,2(),σ(WS

h
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Qh e
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+
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where the [ONE] matrix loads the expression at the appropriate boundary node. 
 
The final temperature algorithm formation challenge is the form of latent heat release in the solidification mushy 

zone. Figure A.1 illustrates the assumed Hermite cubic functional form for f in the temperature interval ΔT between 
liquidus and gamma phase solidus temperatures Tl and Tγ. Proceeding through the numerous calculus details and 
defining the “potential” temperature in the mushy zone as Θ = (T – Tγ) / (Tl – Tγ), for L the latent heat, the cubically 
non-linear {WS}e template construction is 

 { }
},]{3000A)[1}(,R){)(L,2,π2(
}]{3000A)[1}(,R){)(L,3,π2()L(WS

ΘΘΘ−+

ΘΘ=e  (A.11) 
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Figure Captions 
Figure 1. Sensitivity–uncertainty analysis organization. 
Figure 2. Casting model, liquid alloy in carbon mold. 
Figure 3. Truchas simulation solution, t = 300 sec. 
Figure 4. Sensitivity theory implementation axisymmetric geometry. 
Figure 5. Phase with displacement and temperature distributions during mold cooldown at (a) t = 1 sec, (b) t = 51 

sec, (c) t = 501 sec. 
Figure 6. Phase with temperature distribution sensitivity to cp uncertainty, kgK2/J, level, slope, and curvature at 

(a) t = 451 sec, (b) t = 501 sec, (c) t = 551 sec. 
Figure 7. Phase with temperature distribution sensitivity to k uncertainty, mK2/W, level, slope, and curvature at 

(a) t = 401 sec, (b) t = 451 sec, (c) t = 501 sec. 
Figure 8. Phase with displacement distribution sensitivity to cp uncertainty, mkgK/J, level, slope, and curvature at 

(a) t = 401 sec, (b) t = 451 sec, (c) t = 501 sec, (d) t = 551 sec. 
Figure 9. Phase with displacement distribution sensitivity to k uncertainty, m2K/W, level, slope, and curvature at 

(a) t = 401 sec, (b) t = 451 sec, (c) t = 501 sec, (d) t = 551 sec. 
Figure A.1. Hermite cubic distribution for latent heat release model. 
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Figure 1. Sensitivity–uncertainty analysis organization. 
 
 
 
 
 
 

 
 

Figure 2. Casting model, liquid alloy in carbon mold. 
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Figure 3. Truchas simulation solution, t = 300 sec. 
 
 
 
 

 
Figure 4. Sensitivity theory implementation axisymmetric geometry. 
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Figure 5. Phase with displacement and temperature distributions during mold cool-down  

at (a) t = 1 sec, (b) t = 51 sec, (c) t = 501 sec. 
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Figure 6. Phase with temperature distribution sensitivity to cp uncertainty, kgK2/J, level, slope, and curvature  

at (a) t = 451 sec, (b) t = 501 sec, (c) t = 551 sec. 
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Figure 7. Phase with temperature distribution sensitivity to k uncertainty, mK2/W, level, slope, and curvature  

at (a) t = 401 sec, (b) t = 451 sec, (c) t = 501 sec. 
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Figure 8. Phase with displacement distribution sensitivity to cp uncertainty, mkgK/J, level, slope, and curvature 

at (a) t = 401 sec, (b) t = 451 sec, (c) t = 501 sec, (d) t = 551 sec. 
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Figure 9. Phase with displacement distribution sensitivity to k uncertainty, m2K/W, level, slope, and curvature  

at (a) t = 401 sec, (b) t = 451 sec, (c) t = 501 sec, (d) t = 551 sec. 
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Figure A.1. Hermite cubic distribution for latent heat release model. 


